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We consider the Mθ/G/1/m queue with two service modes (basic and postthreshold) with
the distribution functions of service time F (x) and F̃ (x) respectively. The postthreshold mode
is used in conjunction with blocking of input flow if at the beginning of service of the next
customer the number of customers in the system ξ(t) satisfies the condition ξ(t) > h2. Return
to the basic mode and stop blocking carried out at the beginning of service of the next customer,
if ξ(t) ≤ h1, where h1 ≤ h2. Laplace transforms for distributions of the number of customers
in the system during the busy period and for the busy time distribution function are found.
The mean duration of the busy time is found, and formulas for the stationary distribution of
number of customers in the system and stationary characteristics of queue are obtained. The
case of m =∞ is considered.

К. Ю. Жерновый. Система Mθ/G/1/m с двумя режимами работы и гистерезисным
регулированием очереди // Мат. Студiї. – 2012. – Т.38, №2. – C.194–202.

Для системы Mθ/G/1/m применяются два режима обслуживания (основной и послепо-
роговый) с функциями распределения времени обслуживания F (x) и F̃ (x) соответственно.
Послепороговый режим сопровождается блокировкой входного потока и начинает функ-
ционировать, если в момент t начала обслуживания очередной заявки число заявок в
системе ξ(t) удовлетворяет условию ξ(t) > h2. Возвращение к основному режиму и пре-
кращение блокировки осуществляется в момент начала обслуживания той заявки, для
которой ξ(t) ≤ h1, где h1 ≤ h2. Найдены значения преобразования Лапласа для распреде-
ления числа заявок в системе в течение периода занятости и для функции распределения
периода занятости, определена средняя продолжительность периода занятости, получе-
ны формулы для стационарного распределения числа заявок в системе и стационарных
характеристик. Рассмотрен случай m =∞.

1. Introduction. In application of queueing systems, the following two problems are of great
importance: a) we want the queue to be not too long; b) it is desirable that the total idle time
of the server is as short as possible. These requirements are in opposition to each other. This
situation is readily clarified in the following example. Let us consider a standard M/G/1-type
queueing system and let ρ be its traffic intensity. It is well known that if 0 < ρ < 1 then
the mean value of the queue length is finite, but it increases towards infinity as ρ ↑ 1. On
the other hand, the mean value of the total idle time has a tendency to increase as ρ ↓ 0.
So, problem a) requires ρ to be close to 0, while problem b) requires ρ to be close to 1. We
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propose to satisfy both these requirements using a special type of queuing system with an
oscillating stochastic process.

Many schemes of control the processes of transmission information in telecommunication
networks are built on the idea of oscillating stochastic process, first studied by J. H. B. Kem-
perman ([1]). In these schemes the idea of threshold value of queue length is used to control of
the service speed and intensity of the input flow (see [2–6]). For example, D. Choi, C. Knessl
and C. Tier ([2]) consider the queue with one server and with Poisson input flow. If, at the
moment of customer service start, the queue length is less than the threshold value of h
(respectively, greater than or equal to h), then the service time distribution function of this
customer is F (respectively F̃ ). Generalization of this approach is the strategy of switching
hysteresis modes with two threshold values of h1 ≤ h2, which is used, in particular, in the
papers of A. Dudin ([7]) and M. Bratiichuk ([8]) to Mθ/G/1 and G/M/1 queues, respectively.
In the first paper, there are two modes of operation with different intensities of input flow
and speed of service, and in the second paper there are two modes of operation with different
intensities of speed service. The stationary distribution of the number of customers is found
in [7] by using the method of an embedded Markov chain. This stationary distribution
corresponds to the completion of service of customers and for Mθ/G/1/m system with limited
queue, in general, does not coincide with a stationary distribution for arbitrary moments of
time (t→∞).

In connection with rapid development of INTERNET, interest to study of queues with
finite buffer (limited queue) increases recent years ([9]). Unlike [7], we study the Mθ/G/1/m
system with limited queue and with blocking of input flow during use postthreshold mode
of service. Systems with blocking of input flow were studied, in particular, by A. Bratii-
chuk ([10]) and K. Zhernovyi ([11–14]). Comparing to [7], here we are going to use another
approach which was proposed by V. Korolyuk ([15]) in studying boundary problems for
compound Poisson processes and which he called the potential method. This approach allows
one to obtain an efficient algorithm for finding stationary distribution of number of customers
and study not only stationary, but the transition mode of the Mθ/G/1/m queue.

2. Description of the model. Let us consider a finite-capacity queueing system (QS)
Mθ/G/1/m, in which arrivals can occur in a group. Such a system can be formally defined
by sequences of the random variables {αn}, {θn}, {βn} or {β̃n} (n ≥ 1), which represent
the interarrival times of the groups of customers, the size of the n-th group and the service
time of the n-th customer respectively. All these random variables are supposed to be totally
independent and

P{αn < x} = 1− e−λx (λ > 0), P{θn = i} = ai (i ≥ 1),
∑∞

i=1
ai = 1,

P{βn < x} = F (x) (x ≥ 0), F (0) = 0; P{β̃n < x} = F̃ (x) (x ≥ 0), F̃ (0) = 0.

The service discipline is “first come — first served” and the system has only m waiting places,
so if the n-th group of customers arrives in the system having already k customers in the
line, then only min{θn,m + 1 − k} customers of this group are added to the line, but the
others are lost.

Let ξ(t) denote the number of customers in the system at a moment t, and we introduce
two thresholds h1 ≤ h2. If t is the moment of customer service start and ξ(t) > h2 (1 ≤
h2 ≤ m − 1), then the input flow is blocked during service of this customer (customers are
not allowed to enter the QS). Admission process of customers is restored at the moment t of
customer service start, for which ξ(t) ≤ h1 (1 ≤ h1 ≤ m− 1). Since the moment of the first
customer service start during blocking until the completion of the blocking of input, flow
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service time is distributed by law F̃ (x).

We denote the described QS as Mθ
h1,h2

/G, G̃/1/m. If h1 = h2 = h, then we obtain the
system Mθ

h/G, G̃/1/m with a single threshold, which is studied in [13, 14]. The system
Mθ

h,m−1/G, G̃/1/m, for which h1 < h2 = m − 1, is considered in [11]. If h1 = h2 = m,

then we get the system Mθ/G/1/m with limited queue.

3. Distribution of the number of customers in the system on the busy period.
Denote by PF,n (PF̃ ,n) the conditional probability, provided that at the initial time the
number of customer of QS is n ≥ 0 (n ≥ h1 + 1) and service begins with the service time
distributed according to the law F (x)

(
F̃ (x)

)
, and by E (P) the conditional expectation

(conditional probability) if the system starts to work at the time of arrival of the first group
of customers.

We introduce the following notation: η(x) is the number of customers arriving in the
system during the time interval [0;x); ak∗i is the k-convolution of the distribution ai; a(s, z) =
s+ λ

(
1− α(z)

)
; ρ = λMb. We put

f(s) =

∫ ∞
0

e−sxdF (x), M =

∫ ∞
0

xdF (x) <∞, F (x) = 1− F (x),

f̃(s) =

∫ ∞
0

e−sxdF̃ (x), M̃ =

∫ ∞
0

xdF̃ (x) <∞, F̃ (x) = 1− F̃ (x),

b =
∑∞

k=1
kak <∞, α(z) =

∑∞

k=1
zkak, an =

∑∞

k=n
ak,

pn(s) =
∑∞

k=n
pk(s), qn(s) =

∑∞

k=n
qk(s).

For Re s ≥ 0 we define the sequences pi(s) (i ∈ {−1, 0, 1, . . .}) and qi(s) (i ∈ {0, 1, . . .})
using the relations

pi(s) =
1

f(s)

∫ ∞
0

e−sxP{η(x) = i+ 1}dF (x) =
1

f(s)

i+1∑
k=0

ak∗i+1

∫ ∞
0

e−(λ+s)x
(λx)k

k!
dF (x), (1)

qi(s) =

∫ ∞
0

e−sxP{η(x) = i}F (x)dx =
i∑

k=0

ak∗i

∫ ∞
0

e−(λ+s)x
(λx)k

k!
F (x)dx. (2)

Functions Rk(s) (k ∈ {1, 2, 3, . . .}) are defined using the equality

∞∑
k=1

zkRk(s) =
z

f
(
a(s, z)

)
− z

, |z| < ν−(s), (3)

where ν−(s) is the unique solution of the equation f
(
a(s, z)

)
= z on the interval [0, 1].

The sequence pi(s) with s > 0 can be treated as a distribution of jumps of some down
skip free random walk corresponding to the distribution function F (x) of the main mode of
service.

Let

pi = lim
s→+0

pi(s), Ri = lim
s→+0

Ri(s), qi = lim
s→+0

qi(s), (4)
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then from equalities (1)–(4) we obtain

pi =
i+1∑
k=0

ak∗i+1

∫ ∞
0

e−λx
(λx)k

k!
dF (x) (i ≥ −1), q0 =

1− f(λ)

λ
, qk =

k∑
i=1

aiqk−i −
pk−1
λ

(k ≥ 1),

R1 =
1

p−1
, Rk+1 =

Rk −
∑k−1

i=0 piRk−i

p−1
(k ≥ 1). (5)

Let τ(m) = inf{t ≥ 0: ξ(t) = 0} denote the first busy period for the system Mθ
h1,h2

/G,
G̃/1/m, and

ϕF,n(t, k) = PF,n{ξ(t) = k, τ(m) > t} (1 ≤ n, k ≤ m+ 1),

ϕF̃ ,n(t, k) = PF̃ ,n{ξ(t) = k, τ(m) > t} (h1 + 1 ≤ n ≤ m+ 1, 1 ≤ k ≤ m+ 1),

ϕn(t, k) =

{
ϕF,n(t, k), 1 ≤ n ≤ h2,

ϕF̃ ,n(t, k), h2 + 1 ≤ n ≤ m+ 1,
Φn(s, k) =

∫ ∞
0

e−stϕn(t, k)dt, Re s > 0.

It is obvious that ϕ0(t, k) = 0. We introduce the notations

Ln(s) = f̃m−h1(s)pm−n(s) +
∑m−1

j=h2+1
pj−n(s)f̃ j−h1(s),

Mn(s, k) = qk−n(s) + I{k = m+ 1}qm+2−n(s) + f(s)

(
I{h1 + 1 ≤ k ≤ m}pm−n(s)f̃m−k(s)+

+
∑m−1

j=h2+1
pj−n(s)f̃ j−k(s)I{h1 + 1 ≤ k ≤ j}

)
1− f̃(s)

s
,

rn(s) = Rn(s)− f(s)
∑n

i=1
Ri(s)pn−i(s), ∆1(s) = 1 + f(s)

∑h2−h1

i=1
Ri(s)Lh1+i(s),

∆(s) = ∆1(s)rh2(s)− f(s)rh2−h1(s)
∑h2

i=1
Ri(s)Li(s).

Here, I{A} is 1 or 0, depending on whether the event A occurs or not.

Theorem 1. For the system Mθ
h1,h2

/G, G̃/1/m we have

Φn(s, k) = rh2−n(s)Φh2(s, k)−

−f(s)
∑h2−n

i=1
Ri(s)Ln+i(s)Φh1(s, k)−

∑h2−n

i=1
Ri(s)Mn+i(s, k), 1 ≤ n ≤ h2 − 1, (6)

Φn(s, k) = f̃n−h1(s)Φh1(s, k)+

+I{h1 + 1 ≤ k ≤ n}f̃n−k(s)1− f̃(s)

s
, h2 + 1 ≤ n ≤ m+ 1, (7)

where 1 ≤ k ≤ m+ 1, Re s > 0, and

Φh1(s, k) =
1

∆(s)

(
rh2−h1(s)

∑h2

i=1
Ri(s)Mi(s, k)− rh2(s)

∑h2−h1

i=1
Ri(s)Mh1+i(s, k)

)
,

Φh2(s, k) =
1

∆(s)

∑h2

i=1
Ri(s)

(
∆1(s)Mi(s, k)− f(s)Li(s)

∑h2−h1

j=1
Rj(s)Mh1+j(s, k)

)
. (8)
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Proof. Using the formula of total probability, we obtain the equalities

ϕn(t, k) =
m−n∑
j=0

∫ t

0

P{η(x) = j}ϕn+j−1(t− x, k)dF (x)+

+

∫ t

0

P{η(x) ≥ m+ 1− n}ϕm(t− x, k)dF (x) +
(
P{η(t) = k − n}+

+I{k = m+ 1}P{η(t) ≥ m+ 2− n}
)
F (t), 1 ≤ n ≤ h2,

ϕn(t, k) =

∫ t

0

P

{n−h1∑
i=1

β̃i ∈ dx
}
ϕh1(t− x, k) + I{h1 + 1 ≤ k ≤ n− 1}×

×
∫ t

0

P

{n−k∑
i=1

β̃i ∈ dx
}
F̃ (t− x) + I{k = n}F̃ (t), h2 + 1 ≤ n ≤ m+ 1.

Let us pass to Laplace transforms in these equations. To determine the functions Φn(s, k)
(1 ≤ n ≤ m + 1), using (1), (2), we obtain the system of equations, which consists of the
equations

Φn(s, k) = f(s)
∑m−n

j=0
pj−1(s)Φn+j−1(s, k) + f(s)pm−n(s)Φm(s, k)+

+qk−n(s) + I{k = m+ 1}qm+2−n(s), 1 ≤ n ≤ h2, (9)

the equations (7) and the boundary condition

Φ0(s, k) = 0. (10)

Taking from (7) Φn(s, k) for h2 + 1 ≤ n ≤ m and substituting them into relations (9),
we obtain the equations

Φn(s, k)− f(s)
∑h2−n−1

j=−1
pj(s)Φn+j(s, k) =

= f(s)Ln(s)Φh1(s, k) + f(s)ph2−n(s)Φh2(s, k) +Mn(s, k), 1 ≤ n ≤ h2. (11)

Writing solutions of equations (11) in the same form as similar in structure the system
in [11], we obtain the equalities (6). Putting in (6) first n = h1, and then n = 0, taking into
account boundary condition (10), we obtain a system of two linear equations for Φh1(s, k)
and Φh2(s, k). Solutions of this system are determined by formulas (8).

4. The busy period and stationary distribution for the systems Mθ
h1,h2

/G, G̃/1/m

and Mθ
h1,h2

/G, G̃/1. If the system Mθ
h1,h2

/G, G̃/1/m starts functioning when the first group
of customers arrives, then∫ ∞

0

e−stP{ξ(t) = k, τ(m) > t}dt =
m∑
n=1

anΦn(s, k) + am+1Φm+1(s, k). (12)

To obtain a representation for
∫∞
0
e−stP{τ(m) > t}dt, we should pass in equality (12) to
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summation on k from 1 to m+ 1. Denoting
∑m+1

k=1 Mn(s, k) by Mn(s), we find

Mn(s) =
1− f(s)

s
+ f(s)

(1− f̃m−h1(s)
s

pm−n(s) +
∑m−1

j=h2+1
pj−n(s)

1− f̃ j−h1(s)
s

)
,∑m+1

k=1
Φh1(s, k) =

Dh1(s)

∆(s)
,
∑m+1

k=1
Φh2(s, k) =

Dh2(s)

∆(s)
,

Dh1(s) = rh2−h1(s)
∑h2

i=1
Ri(s)Mi(s)− rh2(s)

∑h2−h1

i=1
Ri(s)Mh1+i(s),

Dh2(s) =
∑h2

i=1
Ri(s)

(
∆1(s)Mi(s)− f(s)Li(s)

∑h2−h1

j=1
Rj(s)Mh1+j(s)

)
,

and from (12) we obtain∫ ∞
0

e−stP{τ(m) > t}dt =
1

∆(s)

(∑h2

n=1
anrh2−n(s)Dh2(s)−Dh1(s)×

×
(
f(s)

∑h2−1

n=1
an
∑h2−n

i=1
Ri(s)Ln+i(s)−

∑m

n=h2+1
anf̃

n−h1(s)− am+1f̃
m+1−h1(s)

))
−

−
∑h2−1

n=1
an
∑h2−n

i=1
Ri(s)Mn+i(s) +

∑m

n=h2+1
an

1− f̃n−h1(s)
s

+ am+1
1− f̃m+1−h1(s)

s
.

(13)

We have

Ln(0) = ph2+1−n, Mn(0) = M + M̃
(∑m−1

j=h2+1
(j − h1)pj−n + (m− h1)pm−n

)
.

Using equalities (5) and the following equalities from [11]∑n

i=1
Ripn−i = Rn − 1 (n ≥ 1), (14)

we have rn(0) = p−1Rn+1, ∆1(0) = ∆(0) = p−1Rh2−h1+1. Passing to the limit as s→ +0 in
equality (13), we obtain an expression for the mean duration of the busy time. So, we have
proved the following statement.
Theorem 2. The mean duration of the busy time for the system Mθ

h1,h2
/G, G̃/1/m has the

form

Eτ(m) = MT0(h1, h2) + M̃T1(m,h1, h2), (15)

where

T0(h1, h2) =

h2∑
i=1

Riah2+1−i −R(h1, h2)

h2−h1∑
i=1

Ri,

T1(m,h1, h2) =

h2∑
i=1

Ri

m−1∑
j=h2+1

(
(j − h1)pj−i + (m− h1)pm−i

)
−

−
h2−1∑
n=1

an

h2−n∑
i=1

Ri

m−1∑
j=h2+1

(
(j − h1)pj−n−i + (m− h1)pm−n−i

)
+

m∑
n=h2+1

(n− h1)an+

+(m+ 1− h1)am+1 −R(h1, h2)

h2−h1∑
i=1

Ri

m−1∑
j=h2+1

(
(j − h1)pj−h1−i + (m− h1)pm−h1−i

)
, (16)

R(h1, h2) =
1

Rh2−h1+1

(
Rh2+1 −

h2∑
n=1

anRh2+1−n

)
.
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Putting in (12) s = 0, we obtain∫ ∞
0

P{ξ(t) = k, τ(m) > t}dt =
∑h2

i=1
RiMi(k)−

∑h2−1

n=1
an
∑h2−n

i=1
RiMn+i(k)+

+M̃
(∑m

n=h2+1
anI{h1 + 1 ≤ k ≤ n}+ am+1I{h1 + 1 ≤ k ≤ m+ 1}

)
−

−R(h1, h2)
∑h2−h1

i=1
RiMh1+i(k), (17)

where

Mn(k) = Mn(0, k) = qk−n + I{k = m+ 1}qm+2−n+

+M̃
(∑m−1

j=h2+1
I{h1 + 1 ≤ k ≤ j}pj−n + I{h1 + 1 ≤ k ≤ m}pm−n

)
.

Let ρk(m) = limt→∞P{ξ(t) = k} be the stationary probability of the presence of k
customers in the system Mθ

h1,h2
/G, G̃/1/m and πk(m) = ρk(m)/

(
λρ0(m)

)
. In the notation

of similar characteristics of the system with unlimited queue Mθ
h1,h2

/G, G̃/1, we replace m
with ∞. From (17), reasoning as in the proof of Theorem 2 ([12]), we obtain the following
statement.
Theorem 3. For the stationary distribution of the number of customers in the system
Mθ

h1,h2
/G, G̃/1/m, the following representations are valid

ρ0(m) =
1

1 + λEτ(m)
, πk(m) =

k∑
i=1

Riqk−i −
k−1∑
n=1

an

k−n∑
i=1

Riqk−n−i (k ∈ {1, . . . , h1}),

πk(m) =
k∑
i=1

Riqk−i −
k−1∑
n=1

an

k−n∑
i=1

Riqk−n−i−

−R(h1, h2)
( k−h1∑

i=1

Riqk−h1−i − M̃
)

(k ∈ {h1 + 1, . . . , h2}),

πk(m) =

h2∑
i=1

Ri

(
qk−i + M̃pk−i

)
−

h2−1∑
n=1

an

h2−n∑
i=1

Ri

(
qk−n−i + M̃pk−n−i

)
+

+M̃ak −R(h1, h2)

h2−h1∑
i=1

Ri

(
qk−h1−i + M̃pk−h1−i

)
(k =∈ {h2 + 1, . . . ,m}), (18)

πm+1(m) =

h2∑
i=1

Riqm+1−i −
h2−1∑
n=1

an

h2−n∑
i=1

Riqm+1−n−i + M̃am+1 −R(h1, h2)

h2−h1∑
i=1

Riqm+1−h1−i.

According to Lemma 1 ([13]), for sequences {pi}, {Ri} the following equalities are
performed ∑∞

j=0
pj = ρ,

∑k

i=1
Ri

∑k−i

j=0
pj =

∑k

i=1
Ri − k. (19)

Theorem 4. For the mean duration of the busy time and the stationary distribution of
number of customers in the system Mθ

h1,h2
/G, G̃/1, the following representations are valid

Eτ(∞) = MT0(h1, h2) + M̃
(
b+ (ρ− 1)T0(h1, h2)

)
, (20)

ρ0(∞) =
1

1 + λEτ(∞)
, πk(∞) = πk(m) (k ≥ 1), (21)
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where πk(∞) = ρk(∞)/
(
λρ0(∞)

)
, and T0(h1, h2), πk(m) are defined by formulas (16), (18).

Proof. If m ↑ ∞ then such parameters of the QS as a state of the process ξ(t) at a fixed
time t, busy time τ(m) and stationary probabilities ρk(m) have the property of stochastic
monotonicity ([16, p.116]). Putting m → ∞ in (15) and using the monotone convergence
theorem ([17, p.405]), we obtain

lim
m→∞

Eτ(m) = Eτ(∞) = MT0(h1, h2) + M̃T1(∞, h1, h2), (22)

where

T1(∞, h1, h2) =

h2∑
i=1

Ri

∞∑
j=h2+1

(j − h1)pj−i −
h2−1∑
n=1

an

h2−n∑
i=1

Ri

∞∑
j=h2+1

(j − h1)pj−n−i+

+
∞∑

n=h2+1

(n− h1)an −R(h1, h2)

h2−h1∑
i=1

Ri

∞∑
j=h2+1

(j − h1)pj−h1−i.

Taking into account relations (19), using simple transformations we obtain
∞∑

j=h2+1

(j − h1)pj−i = (h2 − h1 + 1)ph2+1−i +
∞∑

j=h2+2−i

pj = (h2 − h1)ph2+1−i + ρ−
h2−i∑
j=0

pj,

h2∑
i=1

Ri

∞∑
j=h2+1

(j − h1)pj−i =

h2∑
i=1

Ri

(
ρ−

h2−i∑
j=0

pj + (h2 − h1)(ph2−i − ph2−i)
)

=

= h2 + (h2 − h1)(Rh2 − 1)−
h2∑
i=1

Ri +

h2∑
i=1

Ri

(
ρ− (h2 − h1)ph2−i

)
=

= (ρ− 1)

h2∑
i=1

Ri + h1 + (h2 − h1)Rh2+1p−1. (23)

By transforming the expressions∑h2−n

i=1
Ri

∑∞

j=h2+1
(j − h1)pj−n−i,

∑h2−h1

i=1
Ri

∑∞

j=h2+1
(j − h1)pj−h1−i,

as it was done in (23), taking into account the equality∑∞

n=h2+1
(n− h1)an = b−

∑h2

n=1
nan − h1ah2+1,

from (22) we obtain equality (20). Putting m → ∞ in equalities (18) and using again the
monotone convergence theorem, we get (21).

5. Determination of stationary characteristics. Relying on ergodicity property of the
process ξ(t), we obtain the formula of the probability of service Psv(m) for the system
Mθ

h1,h2
/G, G̃/1/m as the ratio of the mean number of served customers to the mean number

of arrived per unit time. The mean number of arrived customers is λb, and the mean number
of served customers during the same time is

(
1 − ρ0(m)

)
/M, where M is a mean service

time of one customer, which we find by the formula
1

M
=

Eτ0(m)

MEτ(m)
+

Eτ̃(m)

M̃Eτ(m)
.

Here Eτ0(m) and Eτ̃(m) are mean durations of parts of the busy time corresponding of
basic and postthreshold mode of service, respectively. As a result, we get the formula for the
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probability of service

Psv(m) =
T0(h1, h2) + T1(m,h1, h2)

b
(
1 + λEτ(m)

) . (24)

For the system Mθ
h1,h2

/G, G̃/1 equality (24) takes the form

Psv(∞) =
b+ ρT0(h1, h2)

b
(
1 + λEτ(∞)

) .
Stationary characteristics of queue of the system Mθ

h1,h2
/G, G̃/1/m such as the mean queue

length EQ(m) and the mean waiting time Ew(m), we find by the formulas

EQ(m) =
∑m

k=1
kρk+1(m), Ew(m) =

EQ(m)

λbPsv(m)
.
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